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ABSTRACT

A Perfectly Matched Layer (PML) is applied to
a three-dimensional edge-based finite element for-
mulation to calculate the S-parameters of waveg-
uide structures. The PML region is implemented
in the finite element code as a non-physical uniax-
ial anisotropic lossy material. Numerical results
demonstrate the accuracy and future potential of
such an absorber.

I Introduction

Since the introduction of the Perfectly Matched
Layer (PML) concept by Berenger [1], much effort
was mainly concentrated on applying this bound-
ary condition to a variety of problems such as
scattering, antenna radiation, and MMIC struc-
tures. The implementation of the PML absorber
in finite difference methods showed incredible im-
provement in reducing the reflection error caused
by the truncated mesh. Published results illus-
trate cases where the reflection error due to the
PML region is of the order of —~100 dB or even
smaller, which creates new possibilities for highly
accurate simulations using reasonable computer
resources.

The original implementation of the PML by
Berenger [1] was formulated using a split-field ap-
proach which is not governed by Maxwell’s equa-
tions. In addition, such an approach is suit-
able only for the finite-difference time-domain
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method. Recently, it was shown by Gedney [2]
that the PML region can be equivalently modeled
as a uniaxial anisotropic lossy material. How-
ever, like most other contributions on the PML
absorbers, Gedney’s work was also concentrated
on the finite-difference time-domain technique.

This paper basically formulates the PML ab-
sorber following similar guidelines as those pre-
sented by Gedney [2] but applied to the finite ele-
ment method. The main idea is to treat the PML
absorber as a non-physical uniaxial electric and
magnetic anisotropic material. In addition, the
PML material is highly lossy so that the incident
field is significantly attenuated before it actually
reaches the terminating perfect conducting wall.
It was observed by Gedney that this approach is
straightforward and provides exactly the same ac-
curacy as the original Berenger boundary condi-
tions. It is also worth mentioning here that the
concept of the Perfectly Matched Layer, although
a different approach from this paper, has been
applied recently by Pekel and Mittra [3] in calcu-
lating radar cross sections of conducting plates.
However, the obtained results were not as accu-
rate compared to data obtained using the Method
of Moments.

IT Analysis

The finite element formulation starts with the dis-
cretization of the electric field vector equation:

Vx (] VXE) -k [e] E=0 (1)
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where [u,] and [e,] are tensors. As far as the
waveguide problem is concerned, the appropriate
boundary conditions on the surface walls are ei-
ther Dirichlet

axE=0 (2)

for perfect conductors or mixed

2 x (V X E) + jk10ft X (i x E) = =2jk,10E™
(3)
at the input port. Note that k19 is the propaga-
tion constant of the dominant mode and E®¢ is
the incident field. It was assumed that the inci-
dent wave is propagating in the z-direction.
According to Gedney’s paper, the Perfectly
Matched Layer can be modeled as a uniaxial
anisotropic material characterized by the follow-
ing permittivity and permeability tensors:

K 0 o0
[t = = |0 K0 (4)
0 0 1/K
where K is given by
. a
K=1 ~Igee (5)

It is important to emphasize that the permittivity
and permeability tensor given in (4) would pro-
vide a perfectly matched layer only for an inci-
dent wave traveling in the z-direction. Also, from
(5) it is observed that the PML region is lossy;
the actual loss is controlled by the value of ¢. In
the results presented by Berenger, it was clearly
pointed out that the mismatch at the PML in-
terface can be significantly reduced by carefully
selecting the conductivity, o, of the material. Tt
is usually the case that higher reflections occur
when the transition from one medium to another
becomes more abrupt. A judicious choice for ¢ is
given in [2]

0(2) = Omas (i—TZ—O—)m

where 0,4, is the maximum value of the material
conductivity, d is the depth of the PML region,
m is the order of the spatial polynomial, and z,
is the position of the interface.

(6)
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IITI Results

The numerical accuracy of the anisotropic PML
was investigated by computing the S-parameters
of waveguide structures similar to the one illus-
trated in Fig. 1. The rectangular waveguide is
excited with the T'Ejq mode at the input port
whereas the output port is terminated with a 5-
layer PML medium backed with a perfect con-
ductor. The waveguide region is discretized with
tetrahedral elements using the mesh generator of
SDRC-IDEAS. Initially, we considered the waveg-
uide structure shown in Fig. 1 with b = 1 cm,
but without the dielectric discontinuity. The S,
is calculated within a broadband of 10 GHz for
two different discretizations: Case #1 with ap-
proximately 6000 unknowns and Case #2 with
approximately 13000 unknowns. In Case #1, each
layer in the PML region, on the average, can acco-
modate only one tetrahedral element in the longi-
tudinal direction, whereas in Case #2, each layer
can accomodate two tetrahedral elements. Also,
in both cases 0,,,, was chosen to be equal to 4
(note that the dimensions of the waveguide are in
centimeters) and the spatial polynomial order m
was also set to 4. The corresponding results are
illustrated in Fig. 2. It is observed than in Case
#1 the total reflection error is always less than
-30 dB whereas in Case #2 the total reflection er-
ror is always less than -40 dB. Referring to this
figure it is important to emphasize the following:

e The calculated 571 does not include only the
reflections from the PML region but also the
finite element discretization error which is
widely known to be of order h?%, where A is
the maximum edge length of the tetrahedral
element used in the mesh.

The finer the discretization the lower the to-
tal reflection error. The reason is attributed
both to a smaller discretization error and a
better field representation in the PML region.

An ineffective PML region would most likely
result in an error close to 0 dB because of
the presence of the perfect conducting wall
at the output port. In our case it looks like



the PML region acts as a very good absorber
within a broad frequency band.

The second case considered was the same rect-
angular waveguide shown in Fig. 1 but with the
dielectric discontinuity in place. The dielectric
constant for the discontinuity is €, = 6. As was
the case before, the waveguide is terminated with
a 5-layer PML medium backed with a perfect con-
ductor. The number of unknowns in the finite
element region is approximately equal to 13000.
The 577 is computed for values of k,b between
1.6 to 3.0. Our results are compared with data
obtain from Ise et. al. [4]. The comparison be-
tween the two data sets is depicted in Fig. 3. It
is clearly illustrated that the magnitude of Sy;
obtained using the Perfectly Matched Layer is in
excellent agreement with the data extracted from
the paper published by Ise et. al..

The last case we considered in verifying the
effectiveness of the Perfectly Matched Layer as
applied to the finite element method was to cal-
culate the |§2;]2 of a perfectly conducting right-
angle bend shown in Fig. 4. The dimensions of
the waveguide were chosen so that a = 2b. The
output port of the right-angle bend was again ter-
minated with a 5-layer PML medium backed with
a perfect conductor. Note that the orientation
of the PML medium is changed; its permittivity
and permeability tensors should be modified ap-
propriately so it can absorb incident waves that
are traveling in the positive x-direction instead of
the z-direction. The size of the problem is approx-
imately equal to 14000 unknowns. Again, our re-
sults are compared with data extracted from the
paper published by Ise et. al. for values of —2/\1
between 1.0 and 2.0. An excellent agreement be-
tween the two sets of data is illustrated in Fig. 5.

IV Conclusions

A Perfectly Matched Layer made out of a lossy
uniaxial anisotropic material was effectively im-
plemented into a three-dimensional vector finite
element formulation for the calculation of the S-
parameters of various waveguide structures. Nu-
merical results demonstrate that such an absorber
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Figure 1: Dielectric-loaded waveguide terminated
with a perfectly matched layer. The relative per-
mittivity of the dielectric discontinuity is €, = 6.
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Figure 2: Air-filled waveguide (b = 1 c¢cm) termi-
nated with a perfectly matched layer. The PML
region is backed with a perfectly conducting wall.
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Figure 3: Dielectric loaded waveguide (b =1 cm)
terminated with a perfectly matched layer. The
PML region is backed with a perfectly conducting
wall and the relative permittivity of the dielectric
discontinuity is €, = 6.



can be succesfully and accurately used to termi-
nate finite element meshes. However, more inves-
tigations on how to improve the PML need to be
continued.
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Figure 4: Air-filled right-angle bend terminated
with a PML medium at the output port.
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Figure 5: Air-filled right-angle bend (a = 2b) ter-
minated with a perfectly matched layer at the
output port. The PML region is backed with a
perfectly conducting wall.



