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ABSTRACT

A Perfectly Matched Layer (PML) is applied to

a three-dimensional edge-based finite element for-

mulation to calculate the S-parameters of waveg-

uide structures. The PML region is implemented

in the finite element code as a non-physical uniax-

ial anisotropic 10SSY material. Numerical results

demonstrate the accuracy and future potential of

such an absorber.

I Introduction

Since the introduction of the Perfectly Matched

Layer (P ML) concept by Berenger [1], much effort

was mainly concentrated on applying this bound-

ary condition to a variety of problems such as

scattering, antenna radiation, and MMIC struc-

tures. The implement ation of the PML absorber

in finite difference methods showed incredible im-

provement in reducing the reflection error caused

by the truncated mesh. Published results illus-

trate cases where the reflection error due to the

PML region is of the order of – 100 dB or even

smaller, which creates new possibilities for highly

accurate simulations using reasonable computer

resources.

The original implementation of the PML by

Berenger [1] was formulated using a split-field ap-

proach which is not governed by Maxwell’s equa-

tions. In addition, such an approach is suit-

able only for the finite-difference time-domain

*This work is based upon work supported by the U. S.

Army Research Office under grant DAAL03-92-G-0262.

method. Recently, it was shown by Gedney [2]

that the PML region can be equivalently modeled

as a uniaxial anisotropic lossy material. How-

ever, like most other contributions on the PML

absorbers, Gedney’s work was also concentrated

on the finite-difference time-domain technique.

This paper basically formulates the PML ab-

sorber following similar guidelines as those pre-

sented by Gedney [2] but applied to the finite ele-

ment method. The main idea is to treat the PML

absorber as a non-physical uniaxial electric and

magnetic anisotropic material. In addition, the m

PML material is highly Iossy so that the incident

field is significantly attenuated before it actually

reaches the terminating perfect conducting wall.

It was observed by Gedney that this approach is

straightforward and provides exactly the same ac-

curacy as the original Berenger boundary condi-

tions. It is also worth mentioning here that the

concept of the Perfectly Matched Layer, although

a different approach from this paper, has been

applied recently by Pekel and Mittra [3] in calcu-

lating radar cross sections of conducting plates.

However, the obtained results were not as accu-

rate compared to data obtained using the Method

of Moments.

II Analysis

The finite element formulation starts with the dis-

cretization of the electric field vector equation:

V x ([p,]-l . V x E) – kg [~.] :E = O (1)
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where [p~] and [CT] are tensors. As far as the

waveguide problem is concerned, the appropriate

boundary conditions on the surface walls are ei-

t her Dirichlet

tix E=O (2)

for perfect conductors or mixed

fi X (V X E) + jkzloh X (ii X E) = –2jkz10Ei”c

(3)

at the input port. Note that ICZIO is the propaga-

tion constant of the dominant mode and EinC is

the incident field. It was assumed that the inci-

dent wave is propagating in the z-direction.

According to Gedney’s paper, the Perfectly

Matched Layer can be modeled as a uniaxial

anisotropic material characterized by the follow-

ing permittivit y and permeability y tensors:

[1

KOO

[E]@ = [p]p~~ = OKO (4)

o 0 l/K

where K is given by

K=l-j~ (5)
Ueo q.

It is important to emphasize that the permittivity

and permeability tensor given in (4) would pro-

vide a perfectly matched layer only for an inci-

dent wave traveling in the z-direction. Also, from

(5) it is observed that the PML region is Iossy;

the actual loss is controlled by the value of o. In

the results presented by Berenger, it was clearly

pointed out that the mismatch at the PML in-

terface can be significantly reduced by carefully

selecting the conductivity, o, of the material. It

is usually the case that higher reflections occur

when the transition from one medium to another

becomes more abrupt. A judicious choice for o is

given in [2J

()

z—z~ m
0(2) = amaz —

d

where am.. is the maximum value of

(6)

the material

conductivity, d is the depth of the PML region,

m is the order of the spatial polynomial, and ZO

is the position of the interface.

III Results

The numerical accuracy of the anisotropic PML

was investigated by computing the S-parameters

of waveguide structures similar to the one illus-

trated in Fig. 1. The rectangular waveguide is

excited with the TElo mode at the input port

whereas the output port is terminated with a 5-

layer PML medium backed with a perfect con-

ductor. The waveguide region is discretized with

tetrahedral elements using the mesh generator of

SD RC-IDEAS. Initially, we considered the waveg-

uide structure shown in Fig. 1 with b = 1 cm,

but without the dielectric discontinuity. The S1l

is calculated within a broadband of 10 GHz for

two different discretizations: Case #1 with ap-

proximately 6000 unknowns and Case #2 with

approximately 13000 unknowns. In Case #1, each

layer in the PML region, on the average, can acco-

mmodate only one tetrahedral element in the longi-

tudinal direction, whereas in Case #2, each layer

can accommodate two tetrahedral elements. Also,

in both cases Um.z was chosen to be equal to 4

(note that the dimensions of the waveguide are in

centimeters) and the spatial polynomial order m

was also set to 4. The corresponding results are

illustrated in Fig. 2. It is observed than in Case

#1 the total reflection error is always less than

-30 dB whereas in Case #2 the total reflection er-

ror is always less than -40 dB. Referring to this

figure it is important to emphasize the following:

●

●

●

The calculated S’ll does not include only the

reflections from the PML region but also the

finite element discretization error which is

widely known to be of order h2, where h is

the maximum edge length of the tetrahedral

element used in the mesh.

The finer the discretization the lower the to-

tal reflection error. The reason is attributed

both to a smaller discretization error and a

better field representation in the PML region.

An ineffective PML region would most likely

result in an error close to O dB because of

the presence of the perfect conducting wall

at the output port. In our case it looks like
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the PML region acts as a very good absorber

within a broad frequency band.

The second case considered was the same rect-

angular waveguide shown in Fig. 1 but with the

dielectric discontinuity y in place. The dielectric

constant for the discontinuity y is G. = 6. As was

the case before, the waveguide is terminated with

a 5-layer PML medium backed with a perfect con-

ductor. The number of unknowns in the finite

element region is approximately equal to 13000,

The S1l is computed for values of Ic.b between

1.6 to 3.0, Our results are compared with data

obtain from Ise et. al. [4]. The comparison be-

tween the two data sets is depicted in Fig, 3. It

is clearly illustrated that the magnitude of S1l

obtained using the Perfectly Matched Layer is in

excellent agreement with the data extract ed from

the paper published by Ise et. al..

The last case we considered in verifying the

effectiveness of the Perfectly Matched Layer as

applied to the finite element method was to cal-

culate the IS2112 of a perfectly conducting right-

angle bend shown in Fig. 4. The dimensions of

the waveguide were chosen so that a = 2b. The

output port of the right-angle bend was again ter-

minated with a 5-layer PML medium backed with

a perfect conductor. Note that the orientation

of the PML medium is changed; its permittivity

and permeability tensors should be modified ap-

propriately so it can absorb incident waves that

are traveling in the positive x-direction instead of

the z-direction. The size of the problem is approx-

imately equal to 14000 unknowns. Again, our re-

sults are compared with data extracted from the

paper published by Ise et. al, for values of ~

between 1.0 and 2.0. An excellent agreement be-

tween the two sets of data is illustrated in Fig. 5.

IV Conclusions

A Perfectly Matched Layer made out of a lossy

uniaxial anisotropic material was effectively im-

plemented into a three-dimensional vector finite

element formulation for the calculation of the S-

parameters of various waveguide structures. Nu-

merical results demonstrate that such an absorber
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Figure 1: Dielectric-loaded waveguide terminated

with a perfectly matched layer. The relative per-

mittivity of the dielectric discontinuity is Cp = 6.
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Figure 2: Air-filled waveguide (b = 1 cm) termi-

nated with a perfectly matched layer. The PML

region is backed with a perfectly conducting wall.
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Figure 3: Dielectric loaded waveguide (b = 1 cm)

terminated with a perfectly matched layer. The

PML region is backed with a perfectly conducting

wall and the relative permittivity of the dielectric

discontinuity is c, = 6.
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can be successfully and accurately used to termi-

nate finite element meshes. However, more inves-

tigations on how to improve the PML need to be

continued.
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Figure 4: Air-filled right-angle bend terminated

with a PML medium at the output port.
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Figure 5: Air-filled right-angle bend (a = 26) ter-

minated with a perfectly matched layer at the

output port. The PML region is backed with a

perfectly conducting wall.
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